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Remarks on statistical errors in equivalent widths�
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Equivalent width measurements for rapid line variability in atomic spectral lines are degraded by increasing error bars
with shorter exposure times. We derive an expression for the error of the line equivalent width σ(Wλ) with respect to pure
photon noise statistics and provide a correction value for previous calculations.
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1 Introduction

Error bars of line equivalent widths Wλ have been the sub-
ject of a number of investigations of high temporal and
spectral resolution observations with exposures of the or-
der of minutes or even seconds, leading to large errors. A
first expression for the calculation of σ(Wλ) for pure pho-
ton noise statistics was estimated by Williams et al. (1974)
for their rapid line variability observations of Ap and Bp
stars. This was then supplemented by Young (1974) for er-
rors due to scintillation. Lacy (1977) published an improve-
ment of Williams et al. and compared pure photon noise
statistics with the case including scintillation for his Hα and
Hβ rapid line investigations of massive stars. Guided by his
work, Chalabaev & Maillard (1983) again derived an ex-
pression for the error from pure photon noise statistics in
an appendix of their paper on rapid spectral variability of
Be stars. However, their derivation of σ(Wλ) shows some
inconsistencies which we attempt to resolve in this paper.

2 The equivalent width of a spectroscopic
line

In practice, the measurement of noise within a line can be a
difficult task, because photon noise is superposed with stel-
lar variations. Hence, it is necessary to estimate an expres-
sion for the equivalent width which separates these two pa-
rameters and then to find an expression for its error σ(Wλ).
We start with the standard definition of the equivalent width:

Wλ =
∫ λ2

λ1

Fc(λ) − F (λ)
Fc(λ)

dλ

or

Wλ =
∫ λ2

λ1

[
1 − F (λ)

Fc(λ)

]
dλ , (1)
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with Fc(λ) the flux in the continuum, F (λ) the flux in the
line at the wavelength λ and F (λ) = Fc(λ) for λ ≥ λ2 and
λ ≤ λ1. In a first step we integrate Eq. (1) separately and
we obtain

Wλ = ∆λ −
∫ λ2

λ1

F (λ)
Fc(λ)

dλ ,

with the wavelength interval ∆λ = λ2 − λ1. By applying
the mean value theorem we obtain

Wλ = ∆λ ·
[
1 −

(
F (λ)
Fc(λ)

)]
, (2)

with
(

F (λ)
Fc(λ)

)
the normalized average flux within ∆λ. Equa-

tion (2) can be written as

Wλ ≈ ∆λ ·
[
1 − F

Fc

]
. (3)

This can be shown by applying a discrete approximation
of Eq. (2). We use the arithmetic mean and substitute the
line and continuum fluxes by their average values plus their
deviations ∆Fi and ∆Fc,i:(

F

Fc

)
=

1
M

·
M∑
i=1

Fi

Fc,i
⇔
(

F

Fc

)
=

1
M

·
M∑

i=1

(
F + ∆Fi

Fc + ∆Fc,i

)

M represents the number of pixels within the line. Note that
∆Fi within the line consists not only of noise but also of line
information and can be quite large in contrast to ∆Fc,i,(

F

Fc

)
=

F

Fc

· 1
M

·
M∑
i=1

(1 + ∆Fi

F
)

(1 + ∆Fc,i

Fc
)

.

In case of sufficient S/N within the continuum we have∣∣∣∣∆Fc,i

Fc

∣∣∣∣ << 1 ⇒ 1 +
∆Fc,i

Fc

≈ 1 ,

(
F

Fc

)
=

F

Fc

· 1
M

·
M∑
i=1

(
1 +

∆Fi

F

)
,
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(
F

Fc

)
=

F

Fc

+
1
Fc

· 1
M

·
M∑
i=1

∆Fi .

However, by definition

1
M

·
M∑
i=1

∆Fi = 0 =⇒
(

F

Fc

)
≈ F

Fc

.

Hence, the equivalent width can be estimated from the
wavelength interval and the average intensities in the line
and the continuum.

3 The error of the equivalent width

The intensities F (λ) and Fc(λ) are influenced by certain
statistical errors. If we keep in mind that Fc is generally
estimated outside the line region and interpolated across the
line where the line flux is measured and if we assume that
the errors are not correlated we are able to estimate their
standard deviations separately. Following the principal of
error propagation we expand Eq. (3) in a Taylor series:

Wλ = W (F , Fc) +
∂Wλ

∂F
(F − F ) +

∂Wλ

∂Fc

(Fc − Fc) ,

where F and Fc are random variables.
The variance Var(Wλ) ≡ σ2(Wλ) of the expansion is

σ2(Wλ) =
[
∂Wλ

∂F
· σ(F )

]2
+
[
∂W

∂Fc

· σ(Fc)
]2

, (4)

with σ(F ) and σ(Fc) the standard deviations in the line and
the continuum, respectively. By using Eq. (3) the two partial
derivatives are
∂Wλ

∂F
= −∆λ

Fc

,

with ∆λ = M · hλ and the spectral dispersion hλ, and
∂Wλ

∂Fc

=
1
Fc

(∆λ − Wλ) .

3.1 Weak lines

For weak lines the depth of the line is negligible and

σ(F ) =
F

S/N
∼= σ(Fc) =

Fc

S/N

with the signal-to-noise ratio S/N in the undisturbed contin-
uum. With these terms we can write

σ2(Wλ) =
[
M · hλ

S/N

]2
·
[

F

Fc

]2
+

+
[
σ(Fc)

Fc

· (∆λ − Wλ)
]2

, (5)

where the first term is the photometric uncertainty and the
second term the uncertainty of the continuum estimation
over the line. According to Eq. (3) both terms are identical
and we have

σ(Wλ) =
√

2 · (∆λ − Wλ)
S/N

. (6)

This result is easy to understand if we realize that the
line strength for weak lines will be of the order of the noise
itself.

3.2 Low- and high-flux lines

In the case of low (absorption) and high (emission) flux
lines we have to use the corresponding Poisson-statistic

σ(F ) =

√
F

Fc

· σ(Fc) ,

and we get

σ(Wλ) =

√
1 +

Fc

F
· (∆λ − Wλ)

S/N
. (7)

This result seems to be quite simple. However, we
should not expect a complex solution for the error bars of
equivalent widths because of a relatively simple definition
of W . In both cases we now can obtain the standard devia-
tions with the measurable parameters S/N , ∆λ, F and Fc.
In addition, Eq. (7) represents the general error of the line
equivalent width and for the case F ≈ Fc we obtain the
result for weak lines again.

4 A comparison with former calculations

Interestingly our result in Eq. (5) differs from Eq. (A9) of
Chalabaev & Maillard (1983, “C&M”) by a factor M , the
number of pixels corresponding to the interval λ1 ≤ λ ≤
λ2, in the first summand. The reason for this difference can
be found in their expansion C&M (A3):

– C&M (A3) is a multidimensional expansion for the
equivalent width with average values Fj for all pixel
fluxes Fj (the pixel fluxes Fj define random variables).
However, it is not clear why the expansion over M
fluxes Fj should be necessary.

– Although there is no principal difference between the
line and the continuum the continuum part is not con-
sequently developed as it is done for the line part. They
also say that “the value (S/N) characterizes the spread of
read-outs on the continuum of an individual spectrum,
while the quantity σ(Fc) is the total uncertainty of the
continuum level determination, and these two quantities
may be related in a non-simple way”. However, we as-
sume that the uncertainty of the continuum is simply
defined by the noise within the continuum and therefore
the above distinction is not necessary.

– Another difference between C&M and our approach can
be found in their Eq. (A7) which gives S/N = Fj

σ(Fj) .

However, the correct expression is S/N = F
σ(F ) (which

is Fj

σ(Fj)
in the C&M notation).

4.1 The
√

N -rule

Generally, for the variance of a random variable x we have
Var(x) = x2−x2 with x the expectancy value of x. Respec-
tively, we get Var(k ·x) = k2 ·Var(x) with k = constant.
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In particular, the mean value of x of N random variables
x1, ..., xN is x = 1

N ·∑N
i=1 xi and hence

Var(x) = Var

(
1
N

·
N∑

i=1

xi

)
=

1
N2

·
N∑

i=1

Var(xi).

Note that x represents a random variable, as well. If all
variances Var(xi) are identical the

√
N -rule gives σ(x) =

σ(x)/
√

N.

In their approach C&M develop Wλ in a multi-
dimensional expansion

Wλ = W +
M∑

j=1

∂Wλ

∂Fj
· (Fj − Fj) +

∂Wλ

∂Fc
· (Fc − Fc).

We interpret the C&M notation of Fj and Fc as follows:

Fj = 1
M ·∑M

j=1 Fi and Fc = 1
Ñ

·∑Ñ
i=1 Fc,i with Ñ the

number of pixel fluxes for the determination of the noise.
Using ∂Wλ

∂Fj
= −M·hλ

Fc·M they get

Wλ = −M · hλ

Fc

· 1
M

·
M∑

j=1

(Fj − Fj) +
∂Wλ

∂Fc
· (Fc − Fc).

By calculating the variance of Wλ one obtains

Var(Wλ) =
(

M · hλ

Fc

)2

· Var

⎛
⎝ 1

M
·

M∑
j=1

(Fj − Fj)

⎞
⎠

+
(

∂Wλ

∂Fc

)2

· Var(Fc − Fc).

In their approach C&M now assume that both average
values F and Fc are constant (although this assumption is
just an approximation for F by definition) and hence one
gets

Var(Wλ) =
(

M · hλ

Fc

)2

· Var

⎛
⎝ 1

M
·

M∑
j=1

Fj

⎞
⎠

+
(

∂Wλ

∂Fc

)2

· Var(Fc).

Now it is clear that C&M’s goal was to estimate the vari-
ance within the first summand with the variance over the
averages F = 1

M ·∑M
j=1 Fj . The

√
N -rule gives

Var(Wλ) =
(

M · hλ

Fc

)2

· 1
M

· Var(Fj)

+
(

∆λ − Wλ

Fc

)2

· Var(Fc) ,

and hence for the weak-line case

Var(Wλ) =
(

M · hλ

S/N

)2

·
(

F

Fc

)2

· 1
M

+
Var(Fc)

Fc
2 · (∆λ − Wλ)2.

Fig. 1 Principle of the variance and average determination for
a single spectrum and a number of spectra. The figure shows N
measured spectra with M pixels each.

This is C&M (A9), and the first summand is smaller than
our result in Eq. (5) by the factor M . For clarification we
show the principal procedures in Fig. 1. Every measured
single spectrum delivers a separate variance Var(Fλ). By
obtaining N spectra, the variance for the wavelength-aver-
aged spectrum is Var(Fλ) = 1

N ·Var(Fλ). But considering
the variance of all spectral averages, as is done by C&M,
we get Var(F ) = 1

M · Var(Fλ) independent of the number
of measured spectra. Because of the missing sum within the
continuum part of C&M (A3) the factor 1/M does not appear
in both sums.

If we want to estimate σ(Wλ) properly by means of
C&M (A9), depending on the S/N over the whole line, we
have to scale up the measured noise by the factor

√
M .

Therefore the corrected formula C&M (A7) is S/N =√
M · Fj

σ(Fj) . By using this correction Chalabaev & Mail-
lard (1983) would have found the same result for σ(Wλ)
as we do. However, we note that this correction is enforced
by the series expansion of C&M. Their procedure, however,
has been used in a series of papers (more than 40 until now)
using expression (A9) of Chalabaev & Maillard (1983).

Now it is easy to estimate the correction factor for the
hitherto estimated error bars of Wλ. For the normal case that
both parts σ(F ) and σ(Fc) are identical we find

σ(Wλ) =

√
2M

M + 1
· σ(Wλ)C&M.

For broad lines we have M + 1 ≈ M and hence σ(Wλ) ≈√
2 · σ(Wλ)C&M where the subindex C&M indicates the

values obtained by Chalabaev & Maillard (1983). In addi-
tion, if we assume that both errors (line and continuum) are
different (as done by C&M) our result can differ even more.

In fact, the above Eq. (4) for σ2(Wλ) does not represent
the exact variance of W but is just an approximation, which
is especially important in the case of small basic popula-
tions (i.e. the number of pixel fluxes for the determination
of noise). The exact definition of the unbiased variance of
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Wλ is

σ2(Wλ) =
Ñ · (M − 1)
Ñ · M − 1

·
(

∂Wλ

∂F
· σ(F )

)2

+

+
M · (Ñ − 1)
Ñ · M − 1

·
(

∂W

∂Fc

· σ(Fc)
)2

(8)

(Kreyszig 1967) with Ñ the number of pixel values for the
estimation of S/N and M the number of pixels within the
line. This equation transforms into Eq. (4) if Ñ and M be-
come sufficiently large. If the number of pixels for the esti-
mation of S/N and/or the line width are too small, the error
of equivalent width will be overestimated by using Eq. (4).
This is especially important for low-resolution observations.
For example, if the investigated line covers only 10 pixel
and S/N is estimated over about 50–100 pixels, the true er-
ror would be overestimated by about 3%.

4.2 Scrutinizing previous results

Former conclusions regarding Wλ have to be carefully scru-
tinized due to increased error bars with respect to the result
of C&M, especially if the interpretation of the data depends
on results at the detection limit. For clarification, we give
two prominent examples:

– Searching for rapid line variability in the Be star BD
+37◦1160, Rossi et al. (1991) tried to find a Wλ corre-
lation between Hα and Hβ (see their Fig. 4). Their con-
clusion of “...spectral line variability on a time scale of
300 s” for this Be star is unsustainable, especially for
Hβ.

– Investigating periodic variabilities in UV lines of the B
star ζ Cas, Neiner et al. (2003) claimed to see minima
and maxima for Wλ of the N V 1240 doublet (see their
Fig. 2). This is not valid with respect to our correction
factor of

√
2.
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